Introducing chemical functionality in Fmoc-peptide gels for cell culture.

نویسندگان

  • Vineetha Jayawarna
  • Stephen M Richardson
  • Andrew R Hirst
  • Nigel W Hodson
  • Alberto Saiani
  • Julie E Gough
  • Rein V Ulijn
چکیده

Aromatic short peptide derivatives, i.e. peptides modified with aromatic groups such as 9-fluorenylmethoxycarbonyl (Fmoc), can self-assemble into self-supporting hydrogels. These hydrogels have some similarities to extracellular matrices due to their high hydration, relative stiffness and nanofibrous architecture. We previously demonstrated that Fmoc-diphenylalanine (Fmoc-F(2)) provides a suitable matrix for two-dimensional (2D) or three-dimensional (3D) culture of primary bovine chondrocytes. In this paper we investigate whether the introduction of chemical functionality, such as NH(2), COOH or OH, enhances compatibility with different cell types. A series of hydrogel compositions consisting of combinations of Fmoc-F(2) and n-protected Fmoc amino acids, lysine (K, with side chain R=(CH(2))(4)NH(2)), glutamic acid (D, with side chain R=CH(2)COOH), and serine (S, with side chain R=CH(2)OH) were studied. All compositions produced fibrous scaffolds with fibre diameters in the range of 32-65 nm as assessed by cryo-scanning electron microscopy and atomic force microscopy. Fourier transform infrared spectroscopy analysis suggested that peptide segments adopt a predominantly antiparallel beta-sheet conformation. Oscillatory rheology results show that all four hydrogels have mechanical profiles of soft viscoelastic materials with elastic moduli dependent on the chemical composition, ranging from 502 Pa (Fmoc-F(2)/D) to 21.2 KPa (Fmoc-F(2)). All gels supported the viability of bovine chondrocytes as assessed by a live-dead staining assay. Fmoc-F(2)/S and Fmoc-F(2)/D hydrogels in addition supported viability for human dermal fibroblasts (HDF) while Fmoc-F(2)/S hydrogel was the only gel type that supported viability for all three cell types tested. Fmoc-F(2)/S was therefore investigated further by studying cell proliferation, cytoskeletal organization and histological analysis in 2D culture. In addition, the Fmoc-F(2)/S gel was shown to support retention of cell morphology in 3D culture of bovine chondrocytes. These results demonstrate that introduction of chemical functionality into Fmoc-peptide scaffolds may provide gels with tunable chemical and mechanical properties for in vitro cell culture.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multicomponent dipeptide hydrogels as extracellular matrix-mimetic scaffolds for cell culture applications.

Fmoc-3F-Phe-Arg-NH2 and Fmoc-3F-Phe-Asp-OH dipeptides undergo coassembly to form two-component nanofibril hydrogels. These hydrogels support the viability and growth of NIH 3T3 fibroblast cells. The supramolecular display of Arg and Asp at the nanofibril surface effectively mimics the integrin-binding RGD peptide of fibronectin, without covalent connection between the Arg and Asp functionality.

متن کامل

Glutathione-Triggered Formation of a Fmoc-Protected Short Peptide-Based Supramolecular Hydrogel

A biocompatible method of glutathione (GSH) catalyzed disulfide bond reduction was used to form Fmoc-short peptide-based supramolecular hydrogels. The hydrogels could form in both buffer solution and cell culture medium containing 10% of Fetal Bovine Serum (FBS) within minutes. The hydrogel was characterized by rheology, transmission electron microscopy, and fluorescence emission spectra. Their...

متن کامل

Three-dimensional cell culture of chondrocytes on modified di-phenylalanine scaffolds.

The design of self-assembled peptide-based structures for three-dimensional cell culture and tissue repair has been a key objective in biomaterials science for decades. In search of the simplest possible peptide system that can self-assemble, we discovered that combinations of di-peptides that are modified with aromatic stacking ligands could form nanometre-sized fibres when exposed to physiolo...

متن کامل

Radioiodine D amino acids labeling of Rituximab, a new method for enhancing the radiopharmaceutical targetingand biostability

  Introduction: Radioimmunotherapy (RIT) is a very promising new therapy for the treatment of recurrent B-Cell non-Hodgkin's lymphoma (NHL). Iodine-131 is the most frequently used nuclide in clinical RIT, but its usefulness has been limited by dehalogenation of monoclonal antibodies labeled via conventional methods. To circumvent this problem, we have synthesized a tr...

متن کامل

Convenient and Scalable Synthesis of Fmoc-Protected Peptide Nucleic Acid Backbone

The peptide nucleic acid backbone Fmoc-AEG-OBn has been synthesized via a scalable and cost-effective route. Ethylenediamine is mono-Boc protected, then alkylated with benzyl bromoacetate. The Boc group is removed and replaced with an Fmoc group. The synthesis was performed starting with 50 g of Boc anhydride to give 31 g of product in 32% overall yield. The Fmoc-protected PNA backbone is a key...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Acta biomaterialia

دوره 5 3  شماره 

صفحات  -

تاریخ انتشار 2009